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FOREWORD 

This final report srimmarizes the analysis performed on 

the HPOTP Preburner Pump Bearing assembly located on the Space 
Shuttle Main Engine. An ANSYS finite element model for the 
inlet assembly was built and executed by Gloria B. Power and 
Rebeca S .  Violett in the Structures & Mechanics Section of 
the Lockheed-Huntsville Engineering Center under Contract 
NAS8-37282. 

Rebeca S. Violett. 
Thermal and static analyses were performed by 
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1. IlYTRODUCTIOlJ 

The high-pressure oxidizer turbo--pump (HPOTP) consists of two 

single-stage centrifugal pumps, the main pump and the preburner pump, that are 
directly driven by a two-stage hot-gas turbine. The main pump supplies the 
preburner pump with liquid oxygen. The pump-end bearings are cooled by liquid 
oxygen flowing from the preburner pump through the hub seal to the bearings 
and then to the main pump inducer/impeller inlet. 

Thermal and static analyses were performed on the HPOTP preburner pump 
bearing assembly to calculate the radial displacements of the assembly 
components. The static analysis load case consisted of thermal loads 
(obtained from the thermal analysis), interference fits, pressure loads, and 
bolt preloads. 

An ANSYS three-dimensional finite element model was generated to perform 

the t.herma1 and stress analyses. The model was generated on Lockheed's VAX 
'1.1/785 computer and executed on the Marshall Space Flight Center's Engineering 
Analysis and Data System (RADS). 

The remaining sections of this report consist of descriptions of the 

model, boundary conditions and loads, material properties, thermal 
environment, thermal analysis, structural analysis, and recommendations. 

1 
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2 ,  MODEL DESCRIPTION 

A finite element, cyclic symmetric model of a 40" sector of the HPOTP 
preburner pump bearing assembly was generated using ANSYS. 

defined from 8=Oo to 8=40° in a cylindrical coordinate system with its 
origin located at the center of the HPOTP volute. Figure 1 is a hidden line 

plot of the ANSYS finite element model. In this and all the remaining plots 
in this section, the view is from the pump end to the turbine end of the 
HPOTP. The preburner pump bearing assembly model consists of six components: 
the isolator, the isolator bolts, the hub seal, the hub seal retainer ring, 
the notched head screw, and the housing support. Figure 2 shows cutaway views 
of a l l  these components. 

The 40° section is 

Lists of the model components, identification of the element material and 
type numbers, and a count of the number of nodes and elements of each listed 
component appear in the tables that follow. Table 1 applies to the heat trans- 
fer thermal analysis, and Table 2 applies to the structural static analysis. 
The radial and axial gap elements are null for the thermal analysis, while the 
convection l i n k  elements are null for the static analysis. The element type 
number information is useful €or  selecting all the nodes and elements in a 
component. For example, to select all the isolator nodes and elements, the 
following ANSYS commands would be issued: 

ERSEL,TYPE,l 
NELEH 

These command can be issued in either the PREP7 or POST1 routines. 

2 
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Table 1 T H E W L  ANALYSJS NODES, EI,EWENTS, AND TYPE NIJHBEHS FOR COMPONELTTS 

Nodes 

Componen t 

Is0 lato r 
Isolator Bolts (2) 

Hub Seal 
Ret ai ner Ring 

Notched Head Screw 
Housing Support 
Convection Links 

Radial Gaps 
Axial Gaps 

Elements Elem. Type No. 

I 
~~ 

TOTAL 

Drawing No. 

RSOO7933-023 
ROO1 1320-005 
RSOO7766-023 
RS007761-009 
RS007792-003 
RS007937-007 

1 
4 
3 
2 
4 
1 

7 through 9 

778 
126 
371 
389 
96 
730 

12490 

Elements 

466 
72 
184 
222 
72 
434 
368 

1 

1818 

Elem. Type No. 

1 
2 
3 
4 
5 
6 

7 through 9 
0 
0 

Table 2 STATIC ANALYSIS NODES, ELEMENTS, AND TYPE MIME)ERS FOR COMPONEUTS 

Component 

Isolator 
Isolator Bolts (2) 

Hub Seal 
Retainer Ring 

Notched Head Screw 
Housing Support 
Convection Links 

Radial Gaps 
Axial Gaps 

Drawing No. 

RS007933-023 
ROO1 1320-005 
RS007766-023 
RS007761-009 
RS007792-003 
RS007937-007 

Mat. No. 

1 
4 
3 
2 
4 
1 

7 through 9 

778 
126 
371 
389 
96 

730 

466 
72 

184 
222 
72 

434 

124 
173 

1 
2 
3 
4 
5 
6 
0 

11,12,16 
13-1 5,17,18 

2490 1747 I 

Tables 3 and 4 provide a complete description of the element types, 
including the elements' optional parameters (KEYOPT), for both the thermal and 

static analyses. 
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- 
No. - 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  

- 
Type 

7 0  
7 0  
7 0  
7 0  
7 0  
7 0  
34 
34 
34 
3 4  
0 
0 
0 
0 
0 
0 
0 
0 

- 
rype 
45 
45 
45 
45 
45 
45 
45 
0 
0 
0 

40 
40 
40 
40 
40 
40 
40 
40 
- 
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Table 3 MODEL ELEMENT TYPES FOR THERHAL ANALYSIS 

KEYOPT 

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

Description 

ISOPAR. SOLID, THERMAL 
ISOPAR. SOUD, THERMAL 
ISOPAR. SOUD, THERMAL 
ISOPAR. SOLID, THERMAL 
ISOPAR. SOUD, THERMAL 
ISOPAR. SOUD, THERMAL 
ISOPAR. SOLID, THERMAL 
CONVECTION LINK 
CONVECTION UNK 

NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 
NULL 

CowcnoN UNK 

Table 4 MODEL ELEMENT TYPES FOR STATIC ANALYSIS 

KEYOPT 

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  
0 0 3 0 0 0 0 0 0 0  

Description 

ISOPAR. STRESS SOLID, 3-C 
ISOPAR. STRESS SOLID, 3-0 
ISOPAR. STRESS SOUD, 3-0 
ISOPAR. STRESS SOLID, 3-C 
ISOPAR. STRESS SOLID, 3-C 
ISOPAR. STRESS SOLID, 3-0 
ISOPAR. STRESS SOLID, 3-D 
NULL 
NULL 
NULL 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
COMBINATION ELEMENT 
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All elements listed i n  Tables 1 and 2 are stored in a single ANSYS FILE16.  

Both the thermal and static analyses files (FILE271 were written from FILE16. 

The IBH data file which generated the thermal and static analyses files appears 
in Appendix A. 
static analyses are provided in Appendix B. 

The IBH and Cray runstreams which execute the thermal and 

Table 5 identifies the convection link elements used for the HPOTP pre- 
burner pump bearing interfaces and provides the number of elements, material 
constant, element type, and real constant numbers used for each interface. 
These elements correspond to the contact and gap conductances given in Section 
4 ,  Thermal Environment; that information applies to the thermal analysis only. 

Table 6 identifies the radial gap and interference elements used for the 
HPOTP preburner pump bearing interfaces and provides the clearance, number of 
elements, element type, and real constant numbers used for each interface. The 
interface descriptions are schematically presented in Figures 3 and 4 .  The 
circled numbers correspond to the interface numbers provided in Table 6 .  

Table 5 MODEL CONVECTION LINK ELEHENTS 

5 
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9 

1 0  

TOTAL 

Table 6 MODEL RADIAL GAP AND INTERFERENCE FITS 

Support/ 1 E - 6  8 1 6  335 
Isolator Bolts 

Isolator Bolts 
I so lato r l  1 E - 6  8 1 6  335 

1 2 4  

Table 7 identifies the axial gap and interference elements used for the 
HPOTP preburner pump bearing interfaces. In addition, the clearance, number 
of elements, element type, and real constant numbers are given for each inter- 
face. The interface descriptions are schematically presented in Figures 5 and 
6 .  Again, the circled numbers correspond to the interface numbers provided i n  

Table 7 .  The gap elements for interfaces 1 through 3 were used as contact 
elements, while the interference elements for interfaces 4 and 5 were used to 
preload the bolts. 
interference on the combination element. The bolt preload is further explained 
in Section 3 ,  Boundary Conditions. 

The preload on the bolts was approximated by imposing an 

6 
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Table 7 MODEL AXIAL GAP AND INTERFERENCE FITS 

Note: Clearance sign follows the ANSYS STIF40 convention, i.e., positive indicates a gap 
opening and negative indicates interference. 

7 
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3 .  BOIJNDARY CONDITIONS AND LOADS 

For the thermal analysis, the boundary conditions on the HPOTP preburner 
pump bearing model consisted of exterior surface heat transfer coefficients 
and bulk temperatures, presented in Section 4 of this document, Thermal 

Environment. The heat transfer coefficients and bulk temperatures were 
applied as shown in Figure 7 .  

For the static analysis, the HPOTP preburner pump bearing model was 
constrained in the translational y direction at 8 = 0" and 8 = 4 0 " .  In 
addition, the nodes on the support, where the support bolts are located (not 
modeled), were constrained in the translational x direction. 

The loading on the model for the static analysis consisted of thermal 
loads obtained from the thermal analysis, pressure loads, and a preload on the 
bolts. The pressure loads were applied as shown in Figure 8.  The bolt 
preload was approximated by imposing an interference on the axial gap elements 
located at the isolator bolts/isolator interface and at the notched head 
screw/seal interface. The interference was calculated from the torque 
specified in the bolt drawings. 

8 

LOCKHEED-HUNTSVILLE ENGINEERING CENTER 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

~~ 

LHSC-HEC TR F268584-IIIB 

4 .  THERMAL ENVIRONMENT 

Heat transfer coefficients were calculated for the HPOTP preburner pump 
bearing using the following empirical equations for pipe flow: 

for turbulent flow, 

0.8 0 . 4  
Nu = 0,023 Re Pr 

* 
and for turbulent flow in a rotating system 

0.1 1.06 
/ 2a 0.7 h = 0.035 K (Rero) (Res 1 (2a/ro) 

C 

where 

Nu = Average Nusselt number 
Re = Reynolds number 

Pr = Prandtl number 
K = Thermal conductivity 

2 
= Rotational Reynolds number (pwro/v) 

Re = Source flow Reynolds number (W/4nau) 
r = Inner radius of rotating disk 
r = Outer radius of rotating disk 
a 

S 

i 
0 

= Gap distance between rotating and nonrotating disks 
P = Fluid density 
v = Fluid viscosity 
w = Rotational velocity . 
W = Flow rate. 

5. Kreith, Advances in Heat Transfer, Vo1.5., New York: Academic Press, 
1968, p. 192. 

9 
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Computation of the thermal environment for the HPOTP preburner pump 

bearing was performed by Gene Teal, LMSC-HEC. Pressures, temperatures, and 

flow rates €or  steady state fiill power level operation were obtained from the 

Rocketdyne power balance data. 

flow equation and bearing tester data correlation, a pressure drop across the 

bearings was computed using the coolant flow rate from the power balance data. 
This pressure drop was then used to calculate the coolant flow rate between 

the bearing shield and the isolator. Table 8 gives the pressures, tempera- 

tures, and heat transfer coefficients at the preburner pump locations shown in 

Figure 9. Thermal boundary coefficients at locations 20 and 21 are simplifica- 

tions designed to simulate the outer race to isolator heat fluxes. These data 

were derived from an analysis performed by Joe Cody of SRS Technologies. 

In conjunction with the Rocketdyne bearing 

Table 8 THERMAL ENVIRONMENT 

I I I 1 Node 1 Description 

8 
9 
10 
11 
12 
13 
14 
15 

I 
I 
I 
1 

16 
17 
18 
19 

Film Coefficient 
Film Coefficient 
Film Coefficient 
Film Coefficient 
Film Coefficient 
Film Coefficient 
Film Coefficient 

Contact Conductance 
Contact Conductance 
Contact Conductance 
Contact Conductance 
Contact Conductance 
Contact Conductance 
Contact Conductance 
Contact Conductance 

Gap Conductance 
Gap Conductance 
Gap Conductance 
Gap Conductance 

Conductance from 
Bearing Race to 
Isolator 

P 
(psia) 

350 
350 
350 
400 
400 
7000 
3500 

- 
- 
- 
- 
- 
- 
- 
- 

7000 
400 
7000 
400 

385 

365 

10 

T 
(OR) 

170 
240 
240 
240 
240 
210 
235 

- 
- 
- 
-. 
- 
- 
- 
- 

- 
- 
- 
- 

320 

360 
I 

hc 
(Btu/in2/s/OR) 

0.0018 
0.0012 
0.00021 
0.00056 
0.0001 
0.017 
0.05 

0.0048 
0.0048 
0.0048 
0.0048 
0.0048 
0.0048 
0.0048 
0.0048 

0.0018 
0.0015 
0.0018 
0.0015 

0.00024 

0.00024 
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5 .  MATERIAL PROPERTIES 

The materials used in the HPOTP preburner pump bearing model components 
are listed in Table 9 .  

material thermal and mechanical properties. 
A l s o  listed are the references used for obtaining the 

Table 9 MODEL COWONENT MATERIALS 

COMPONENT 

Isolator 
Isolator Bolts (2) 

Hub Seal 

Retainer Ring 
Notched Head Screw 

Support 

MATER I AL 

INCONEL 718 
AMS 5731 STEEL 

SILVER PLATE 

MONEL BAR 
A286 STEEL 
INCONEL 71 8 

REFERENCE 

M 

- 

Rockwell 
Rockwell 

Grade-B 
Rockwell 
Rockwell 
Rockwell 

I -S-13282 

INCONEL 718 material property data, obtained from the Rockwell Haterials 

Properties Manual, were curve fitted to cubic polynomials for ANSYS input over 
the temperature range of 0 to 2000 OR. 
questionable. However, the expected temperature range for this analysis is 

from 100 to 1500 "R, well within the selected curve fit limits. 
shows the coefficient of thermal conductivity as a function of absolute temp- 
erature. Young's modulus, Poisson's ratio, and the coefficient of thermal 

expansion f o r  INCONEL 718 as functions of absolute temperature are presented 
in Figures 11, 12, and 13, respectively. 

Extrapolation beyond 2000 OR is 

Figure 10 

11 
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I 
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In addition, the following material properties for the A286 steel bolts 

are used: 

Coefficient of Thermal Conductivity (k) = 8.68 Btu/in/"R 

Young's Modulus (E) = 29.1 x 10 lbf/in 
Poisson's Ratio (u) = 0.29 

Coefficient of Thermal Expansion (a) = 0.917 x 10 in/in/"R 

6 2 

-5 

These are assumed constant over the absolute temperature range from 0 to 

2300 OR. 

I 
II 12 
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6 .  THERMAL ANALYSIS 

The nonlinear thermal analysis performed on the HPOTP preburner pump 
bearing model converged in three iterations using the automatic ANSYS con- 
vergence criterion of 1". Temperature distributions for cross sections of 
the model at 8 = 0" and at 8 = 20" are shown in Figures 14 and 15, re- 

spectively. The thermal distribution at these cross sections is representa- 
tive of the thermal distribution in the rest of the model. 
gradients occur at the isolator/bearing race interface. 
results are used for nodal temperature input to the structural analysis 
presented in Section 7 .  

Large thermal 
The thermal analysis 

1 3  
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7 .  STRUCTURAL ANALYSIS/RESULTS 

A static analysis was performed on the HPOTP preburner pump bearing model 
to determine the radial deflection of the isolator under the load case 
described in Section 3 ,  Boundary Conditions and Loads. 

Exaggerated deformation plots of the isolator at cross sections 8 = 0" 

and 8 = 20" are shown in Figures 16 and 17, Dashed lines on the deformation 
plots represent the undeformed structure. Listed in Tables 10 and 11 are the 
radial deflection of the isolator nodes above bearings 1 and 2 ,  respectively. 

1 4  
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NODES 

Table 10 RADIAL DEFLECTIONS OF ISOLATOR NODES ABOVE BEARING 1 

RADIAL DEFLECTION (in. THETA 

0" 

6" 

14" 

20" 

26" 

34" 

40" 

1 
5 
6 
7 
4 

17 
20 
21 
22 

-0.002706 
-0.002754 
-0.002779 
-0.002790 
-0.0027 80 
-0.002706 
-0.002754 
-0.002779 
-0.002789 

I 

19 
188 

-0.002780 
-0.002706 

191 
192 
193 

-0.002754 
-0.002779 
-0.002789 

190 
329 

-0.002780 
-0.002706 

332 
333 
334 

2191 -0.002754 
2192 I -0.002779 
2193 -0.002789 

-0.002754 
-0.002779 
-0.0027 89 

33 1 
2188 

-0.002754 
-0.002779 
-0.002789 
-0.002780 
-0.002706 

-0.002779 
-0.002706 

2005 
2006 
2007 
2004 

2190 
2017 

-0.002754 
-0.002779 
-0.002790 
-0.002780 

-0.002780 
-0.002706 

15 
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RADIAL DEFLECTION (in.) 

Table 11 RADIAL DEFLECTIONS OF ISOLATOR NODES ABOVE BEARING 2 

0" 

32 
31 
44 
45 

-0.002758 

-0.002665 
-0.002722 

-0.002590 

I I I 1 

16 
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8. CONCLUSIONS AND RECOMMENDATIONS 

The static analysis of the HPOTP preburner pump bearing assembly shows 
that the isolator deflects inward due to the operating environment. The 
assembly clearance between the isolator and the bearing outer races is 
0.0024 in. The maximum radial displacement of the isolator is 0.00279. No 
conclusions can be drawn from this since the bearing deflection is not known 
at the operational level. 

In a further analysis, the stiffness of the outer bearing races and the 

stiffness of the preburner pump housing should be included in the model. 

17  
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Notched Head 

X-Section at Theta = 20. 

Figure 3 Schematic of Radial Interfaces 1 through 8 
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I I X-Section at Theta = 0. 

Figure 4 Schematic of Radial Interfaces 9 and 10 
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Figure 5 Schematic of Axial Interfaces Z through 4 

I 1 

X-Section at Theta = 0. 

Figure 6 Schematic of Axial Interface 5 
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Figure 7 Bulk Temperatures ("1.';) A p p l i e d  t o  Model 
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Figure 8 Pressure Applied to Model 
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HPOTP Preburner Pump Bearing 
Thermal Environment Schematic 

Figure 9 Thermal E n v i r o n m e n t  Schematic 
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INCONEL 718 Coefficient of Thermal Conductivity 
as a Function of Absolute Temnerature 
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Figure 11 INCONEL 718 Young's Modulus as a Function of Absolute Temperature 
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Absolute Temperature (deg R) 

Figure 12 INCONEL 718 Poisson's Ratio as a Function of Absolute Temperature 
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Figure 13 INCONEL 718 Coefficient of Thermal Expansion 
as a Function of Absolute Temperature 
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Thermal Distribution at Theta = 0 

Figure 14 Temperature Distribution P lo t  €or Cross Section at 8 = 0" 
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Thermal Distribution at Theta = 20 

Figure 15 Temperature Distribution Plot for Cross Section at 6 = 20" 
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Isolator Deformation at Theta = 0 

Figure 16 Deformation Plot of Isolator at 8 = 0" 

Isolator Deformation a :a = 20 

Figure 17 Deformation Plot of Isolator at 8 = 20" 
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Appendix A 

IBM DATA FILE FOR ANALYSES 
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/CORE,3E6 

PREP7 
C*** 

RESUME 

/TITLE,STATIC A 

KAN,O 

CSYS,1 
C*** 

JAL 

LMSC-HEC TR F268584-IIIB 

DATA INPUT FOR STATIC ANALYSIS 

51s 

C*** SET CONVECTION LINK ELEMENTS TO NULL ELEMENTS 
C*** 

ET,7.0 

RP3,l 
C*** 

C*** SET ELEMENT TYPES 11 THRU 18 TO STIF40 
C*** 

ET,] 1.40 

RP2,l 

ET,13,40,,,3 

RP3,l 

ET, 16.40 

ET,] 7,40,,,3 

RP2,l 
C*** 

C*** DELETE ELEMENT CONVECTIONS AND TEMPERATURE NODE COUPLING 
C*** 

CVDELE.ALL 

CPDELE,401,508 
C*** 

EALL 

NALL 

KTEMP,l,lO 

ITER,-40,40,40 

AFWRITE 

EOF 
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LMSC-HEC TR F268584-IIIB 

DATA INPUT FOR THERMAL ANALYSIS 

/CORE,3E6 

PREP7 
C*** 

/RESUME 
/TITLE, THE- ANALYSIS 
C*** 

KAN,- 1 
C*** 

C*** SET GAP ELEMENTS (STIF40S) TO NULL ELEMENTS 

C*** FOR THERMAL, ANALYSIS 
C*** 

ET, 1 1 ,O 
RP8.1 
C*** 

C*** SET ELEMENT TYPES 7 THRU 9 TO STIF34 
C*** 

ET,7,34 

RP3,l 

C*** DELETE ELEMENT PRESSURES, STRUCTUR. L 

C*** IMPOSED DISPLACEMENTS 

EPDELE,ALL,,,ALL 
CPDELE, 1,347 

DDELE,ALL,ALL 
C*** 

EALL 

NALL 

KBC.1 

ITER,-10,10,10 

AFWRITE 

/EOF 

JODE COUPLING .ND 
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IBM AND CRAY RUNSTREAMS 
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LMSC-HEC TR F268584-IHB 

IBM RUNSTREAM FOR STATIC ANALYSIS 

000002 // MSGCLASS=X 
000003 //DELETE EXEC PGM=IEFBR14 
000004 //F1 DD DISP=(MOD,DELETE),U"=SYSDA, 

000005 // 
000006 //F2 DD DISP=(MOD,DELETE),USYSDA, 

000007 // SPACE=(TRK,( l)),DSN=CCDJ202.ANSYS.HPOTPNSFILE21 
000008 //F3 DD DISP=(MOD,DELETE),UNIT=SYSDA, 
000009 // SPACE=(TRK,(l)),DSN=CCDJ202.ANSYS.HPOTPNS.FILE19 

ooo010 /r 
oooO11 //ANSYS43 EXEC ANSYS43C=CATLG, 
oooO12 // F19='CCDJ202.ANSY S .HPOTPNS .FILE 19'. 
oooO13 // F2l='CCDJ202.ANSYS.HS.FILE21',  

oooO14 // F27='CCDJ202.ANSYS.HPOTPNS.FILE27', 
oooO15 //GO.FILW DD DSN=CCDJ202.ANSYS.HPOTPN.FILE04, 
oooO16 // DISP=(OLD,KEEF'), 
oooO17 // DCB=(RECFM=VBS,LREC652,BLKSIZE=4648) 

oooO18 //GO.FILElB DD DSN=CCDJ202.ANSYS.HPOTPNS.FILEl6, 
oooO19 // DISP=(OLD,KEEP), 
oooO20 // DCB=(RECEM=VBS~CL=5004,BLKSIZE=5008) 
oooO21 //GO.FJLE18 DD UNIT=SYSDA,SPACE=(4642,(3000,%0)), 
oooO22 // DISP=(NEW,CATLG,DELETE), 

oooO23 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000) 

SPACE=(TRK,( l)),DSN=CCDJ202.ANSY S .HPOTPNS .FILE27 

oooO24 //GO .FILE 19 DD SPACE=(4642,(3000,5OO),RLSE) ,DISP=(NEW,CATLG) 
oooO25 //GO.FII;E27 DD SPACE=(4652 ,(3000,5OO),RLSE) ,DISP=(NEW ,CATLG) 
oooO26 /KiO.FlB5F001 DD DSN=CCDJ202.HPOTPNS.DATA(STATIC), 
oooO27 // SPACE=(4096,(9000,1SOO),RLSE),DISP=SHR 
oooO28 // 

B-1 
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000002 // rsGcL 

LMSC-HEC TR F268584-IIIB 

IBM RUNSTREAM FOR THERMAL ANALYSIS 

ss=x 
000003 //DELETE EXEC PGM=IEFBR14 
000004 //F1 DD DISP=(MOD,DELETE),WT=SYSDA, 

000005 // SPACE=(TRK,( l)),DSN=CCDJ202.ANSYS .HPOTPN.FILE27 
000006 //F2 DD DISP=(MOD,DELETE),UNIT=SYSDA, 
000007 // SPACE=(TRK,(l)),DSN=CCDJ202.ANSYS.HPOTPN.FILE21 
000008 //n DD DISP=(MOD,DELETE),UNIT=SYSDA, 
000009 // SPACE=(TRK,( l)),DSN=CCDJ202.ANSYS.HPOTPN.FILE19 
oooO10 /P 
oooO11 //ANSYS43 EXEC ANSYS43C=CATLG, 
oooO12 // F 19='CCDJ202.ANSY S .I-IPOTPN.FILE 19, 
oooO13 // F2 l='CCDJ202.ANSY S .HPOTPNFILE21', 
oooO14 // F27='CCDJ202.ANSYS.HPOTPN.FILE27' 
oooO15 //GO FILE16 DD DSN=CCDJ202.ANSYS.HPOTPNS.FILE16, 
oooO16 // DISF'=(OLD,KEEP), 
oooO17 I/ DCB=(RECFM=VBS,LRECL=5004,BLKSIZE=%O8) 
oooO 18 //GO.FILE 18 DD UNIT=SYSDA,SPACE-(4642,(3000,5)), 
oooO19 // DISP=(NEW,CATLG,DELETE), 
oooO20 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000) 
oooO21 //GOFILE19 DD SPACE=(4642,(3000,500),RLSE),DISP=(NEW,CATLG) 
oooO22 //GO FILE27 DD SPACE=(4652,(3000,5),RLSE),DISP=(NElW,CATLG) 
oooO23 //GO FILE28 DD DSN=CCDJ202.ANSYS.GEOM.FILE28,DISP=(OLD,KEEP), 
oooO24 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=6320) 
oooO25 //GO lT05FOO1 DD DSN=CCDJ202.HPoTPN.DATA(THERMAL), 
oooO26 // SPACE=(4096,(9000,15OO),RLSE),DISP=SHR 

oooO27 11 
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LMSC-HEC TR F268584-IIIB 

CRAY RUNSTREAM FOR STATIC ANALYSIS 

00000 1 JOB ,JN<CDJ202,MFL=25O,T= 1OOO. 
000002 ACCOUNT,AC=6ED55459017,US=CCDJ202. 
000003 FETCH,DN=Fn7,TEXT='DSN=CCDJ202.ANSYS.HPOTPNSFILE27,DISP=SHR'. 
000004 FETCHPN=FT04,DF=TR,TEXT='DSN=CCDJ202.ANSYS.HPOTPN~04,DISP=SHR'. 
000005 ACCESS,DN=ANSYS,PDN=SOLA3N,ID=ANSYS43,0WN=SYSTEM. 
000006 ACCESS ,DN=AUTH43 JD=ANSY S43,0WN=SY STEM. ACCESS AUTHORIZATION FlLE 
000007 MODE,BT=DISABLE. 
OOOOO8 ANSYS. 
000009 SAVE~N=FT14,PDN="OTPNl4. 

ooOo10 DISPOSE,DN=~14PC=ST,TEXT='DSN=CCDJ202.ANSYS.HPOTPNS.FILE14,'A 
ooOo11 'DISP=(,CATLG),'A 
ooOo12 'SPACE=(CYL,(20,2),RLSE),'A 
oooOl3 'DCB=(RECFM=FB,BLKSIZE=6320~~CL=80)',WAIT. 
oooO14 /EOF 

oooO15 /CORE,2.OE6 
ooOo16 NUT.27 
oooO17 m S H  

oooO18 / A w l  
oooO19 BCDCNV 
000020 FINISH 
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LMSC-HEC TR F268584-IIIB 

CRAY RUNSTREAM FOR THERMAL ANALYSIS 

00000 1 JOB JN=CCDJ202,MFL=25O,T=2500. 

000002 ACCOUNT,AC=6ED554590417,US=CCDJ202. 
000003 FETCH,DN=Fn7,TEXT='DSN=CCDJ202.ANSYS.HPOTPN.FILE27'. 
000004 ACCESS ,DN=ANSYS ,PDN=SOL43N,ID=ANSYS43 ,OWN=SY STEM. 

000005 ACCESS,DN=AUTH43,ID=ANSYS43,OWN=SYSTEM. ACCESS AUTHORIZATION FILE 

000006 MODE,BT=DISABLE. 
000007 ANSYS. 

000008 DISPOSE,DN=FIY)I1,DC=ST,DF=TR,TEXT='DSN=CCDJ202.ANSYS.HPOTPN.FILEOQ,'A 
000009 'DISF'=(,CATLG),'A 
oo00 10 'SPACE=(CYL,(60,1O),RLSE),"' 
ooOo11 'DCB=(RECFM=VBS,BLKSIZE=4648CRECL=4652)'.WAIT. 
&12 SAVE,DN=FI'l4QDN=HPOTP14. 

oooO 1 3 DISF'OSE,DN=FI'14 ,DC=ST,TEXT='DSN=CCDJ202./"!3 Y S .HPOTPN.FLE 14 ,'A 

oo00 14 'DISF'=( ,CATLG),'A 
oooO15 'SPACEk(CYL,(20,2),RLSE),'A 
oooO16 'DCB=(RECFM=FB,BLKSIZE=6320,LRECL=80)',WAIT. 
oooO17 /EOF 
oooO18 /CORE,2.OE6 
oooO19 /INPUT,27 
oooO20 FINISH 
oooO21 / A m 1  

oooO20 FINISH 

oooO21 /Am1 
oooO22 BCDCNV 
oooO23 FINISH 
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